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for the MSSW as VObecomes greater than VP. :1’he energy

from the semiconductor is received-–wholly (<?3 = O) or

partly (Q3 < IQ21)—by the MSSW and, consequently, the

amplitude of the waves becomes larger. But if YIIG damping

is so great that Q3 > \Q21, the radiated energy is all

dissipated in YIG loss and does not contribute to the

amplification.

In the preceding

IV. CONCLUSION

section, the amplifying characteristics

of the MSSW WW mode caused by a carrier flow in semi-

conductor have been investigated by using the dispersion

equation and the energy conservation law jfor almost

transparent media. It is pointed out that the WW mode is

favorable to amplification, sifice it has a backward branch

interacting with a slower drifting carrier. Cme of the

important results of our energy analysis is that the MSSW

instability occurs only when the energy dissipation of the

media is negative for the waves. If this result is combined

with Schlomann’s microscopic and qualitative work [15],

one may easily appreciate the amplifying mechanism of this

type physically and construct a total picture of the system.
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On Microwave-Induced Hearing Sensation
JAMES C. LIN, MEMBER, lEEE

Abstract—When a human subject is exposed to pulsed microwave
radiation, an audible sound occurs which appears to originate from

within or immediately behind the head. Laboratory studies have also

indicated that evoked auditory activities may be recorded from cats,
cbinch]llas, and goinea pigs. Using a spherical model of the head, this

paper analyzea a process by which microwave energy miay cause the
observed effect. The problem is formulated in terms of thermoelasticity
theory in which the absorbed microwave energy represents the volume
heat source which depends on both space aud time. The inhomogeneous

thermoplastic motion equation is solved for the acoustic wave parameters
under stress-free surface conditions usiug bouudary value technique and

Duhamel’s theorem. Numerical results show that the predicted frequencies
of vibration and threshold pressure amplitude agree reasonably well with

experimental findings.
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I. INTRODUCTION

I

T HAS BEEN demonstrated that sound can be generated

in laboratory animals by the absorption of microwave

energy in the head [1]–[3]. These reports indicate that

auditory activities may be evoked by irradiating the heads

of cats, chinchillas, and guinea pigs with pulsed microwave

energy [1], [4]–[6]. Responses elicited in cats by both

conventional acoustic stimuli and by pulsed microwaves

disappear following destruction of the round window of the

cochlea [4], and following death [3]. This suggests that
microwave-induced audition is transduced by a mechanism

similar to that responsible for conventional acoustic

reception, and that the primary site of interaction resides

peripherally with respect to the cochlea. More recently [6],

sonic oscillations at 50 kHz have been recorded from the

round window of guinea pigs during irradiation by pulsed
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TABLE I
ELASTIC AND THERMAL PROPERTIESOF BRAIN MATIT.R

Specific heat, c
h

0.88 cal/gm-°C

density, p 1.05 gm/cm3

coefficient of thermal expansion, a 4.1 x lo-5/=’c

Lame’s constant, i 2.24 x 1010dyn/cm2

Lame’s constant, u 10.52 x 103dyn/cm2

Bulk velocity of propagation, c1 1.460 x 105cm/sec

microwaves at918 MHz, The oscillations promptly followed

onset of radiation, preceded the nerve responses, and

disappeared after death. It is therefore reasonable to con-

clude that the microwave-induced auditory effect is a

cochlear response to acoustic signals that are generated,

presumably in the head, by pulsed microwaves.

When human subjects are exposed to pulsed microwave

radiation, an audible sound occurs which appears to

originate from within or immediately behind the head.

The microwave-generated sound has been described as

clicking, buzzing, or chirping depending on such factors as

pulsewidth and repetition rate [2], [4], [5], [7], [8]. The

effect is of great significance since the average incident

power densities required to elicit the response are con-

siderably lower than those found for other microwave

biological effects and the threshold average power densities

are many orders of magnitude smaller than the current

safety standard of 10 mW/cm2 [9].

Although the effect is widely accepted as a genuine

biologic effect occurring at low average power densities,

there exist$ some controversy regarding the mechanism by

which pulsed microwaye energy is converted to sound

[1], [4], [7], [10]-[13]. This paper analyzes the acoustic

wave generated in the heads of animals and man exposed to

pulsed microwave radiation as a result of rapid thermal

expansion.

We assume that the auditory effect arises from the minus-

cule but rapid rise of temperature in the brain as a result

of absorption of microwave energy. The rise of temperature

occurring in a very short time is believed to create thermal

expansion of the brain matter which then launches the

acoustic wave of pressure that is detected by the cochlea

f’13].

We consider the head to be perfectly spherical and con-

sisting only of brain matter. The impinging radiation is

assumed to be a plane wave of pulsed microwave energy.

Our approach is first to obtain the absorbed microwave

energy inside the head. The accompanying temperature rise

is then derived, and finally the inhomogeneous thermo-

plastic motion equation is solved for the acoustic wave

generated in the head.

The relevant physical parameters of brain matter are

listed in Table I. All except one are typical values obtained

from the literature [14]-[1 6]. For the coefficient of thermal

expansion, which does not seem to have been measured in

the past, we assume a value equal to 60 percent of the
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Fig. 1. Absorbed energy distributim in a 7-cm-radius spherical model
of the head exposed to 918-MHz plane wave. The incident power
density is 1 mW/cm2 [20].
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Fig. 2. Absorbed energy distribution in a 3-cm-radius spherical model
of the head exposed to 2450-MHz plane wave. T$e incident power
density is 1 mW/cm2 [20].

corresponding value for water. These values will be useful

for quantitative estimations of the frequency and threshold

of pulsed microwave-induced hearing.

II. THEORETICAL FORMULATION

A. Microwave Absorption

Let us consider a homogeneous spherical model of the

head exposed to a plane wave of pulsed microwave energy.

The absorbed microwave energy Z(r,t) at any point inside

the head is given by

I(r,t) = &rE12 (1)

where cr is the electrical conductivity of brain matter. The

induced electric field E is given by

,gl i’~ = ~oe-icot m 2~ + 1 [UjIiZoi j - ‘bjNeljl (2)

J(I + 1)

where E. is the incident electric field strength, o = 2nfi

~ is frequency, aj and bj are magnetic and electric oscilla-
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Fig. 3. The approximated absorbed energy distribution.

tions, respectively, and E? and N are vector spherical wave

functions. A derivation of (2) may be found in [17]. The

detailed expressions are also given in [18].

For humans exposed to 918-MHz radiations and small

animals such as cats exposed to 2450 MHz, the absorbed

energy distributions inside the head computed from (1) and

(2) show absorption peaks in the center of the lhead [19],

[20]. Plots of the absorbed energy distribution along the

three rectangular coordinate axes of a 7.O-cm-radius

spherical head exposed to 918 MHz and a 3.O-cm-radius

spherical head exposed to 2450-MHz plane waves are

shown in Figs. 1 and 2. The plane wave impinges from the

negative z direction and is polarized in the x direction.

Note that in both cases the absorbed energy along the three

coordinate axes exhibits characteristic oscillations along the

outer portion of the spherical head and reaches a maximum

near the center.

Although the detailed absorption along the three axes is

not the same, we will assume a spherically symmetric

absorption pattern and approximate the absorbed energy

distribution inside the head by the spherically symmetric

function

W(r,t ) = 10 sin
(%/(%)

(3)

where 10 is the peak absorbed energy per unit volume, r is

the radial variable, and a is the radius of the spherical head.

The parameter N specifies the number of oscillations in the

approximated spatial dependence of the absorbed energy.

Fig. 3 shows the approximated energy absorption pattern

for N = 6 and is particularly suited for the cases shown in

Figs. 1 and 2. For some frequencies and sphere sizes, the

integer N may be changed to account for the difference in

absorption patterns. For instance, N = 3 may be chosen to

approximate the absorption pattern inside a 5-cm-radius

spherical head exposed to 918-MHz radiation [20]. For

other frequencies and sphere sizes, a different function will

be required to describe the absorbed energy distribution.

B. Temperature Rise

We take advantage of the symmetry of the absorbed

energy pattern by expressing the heat conduction equation

as a function of r alone [21]. That is,

Mr2aJ 1 au – W(r,t)—-— . (4)
P2 & & 7t at K

where v is temperature, w and K are, respectively, the thermal

diffusivity and conductivity of brain matter, and W is the

heat production rate, which is the same as the absorbed

microwave energy pattern and is assumed for the moment

to be constant over time.

Because microwave absorption occurs in a very short

time interval, there will be little chance for heat conduction

to take place. We may therefore neglect the spatial de-

rivatives in (4) such that

ldv w——= —. (5)
xdt K

Equation (5) may be integrated, directly, to give the change

in temperature by setting the initial temperatures equal to

zero. Thus

10 sin (Nnr/a) t ‘
o(r,t) = —

pch Nzr/a
(6)

where p and c~ are the density and specific heat of brain

matter, respectively, and pch = K/K

In biological materials, the stress-wave development

times are short compared with temperature eq~ilibrium

times. The temperature decay is therefore a slowly varying

function of time and becomes significant only for times

greater than milliseconds. We may thus assume for a square

pulse of microwave energy, immediately after termination

of radiation, that

10 sin (Nnr/a)
v(r,t) = — to

pc~ Nrcr/a
(7)

where to is the pulsewidth,

C. Sound Generation

We now consider the spherical head with homogeneous

brain matter as a linear, elastic medium without viscous

damping. The thermoplastic equation of motion in

spherical coordinates [22] is then given by

a22.4 2au_~u _ la% b au.— .— .
2 +-— r2 C12 at2

(8)
r ar 2+2p8r

where u is the displacement of brain matter, c1 = [(A + 2p)/

PI1/2 is the velocity of bulk acoustic wave propagation,

B = a(3~ + 2P), u is the coefficient of linear thermal
expansion, and 2 and ,u are Lame’s constants. It should be

noted that the curl of u equals zero since u is in the radial
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direction only. The right-hand side of (8) is the change in

temperature which gives rise to the displacement, We first

write

P au— — = Z@r(ry’t(t).
a+2pa~

(9)

Hence

Io -/3
u~=— — (10)

pch A + 2P

and

‘r(r) =a+w%)l ’11)

From (6) and (7), we have

(12)

If the surface of the sphere is stress free, then the boundary

condition at r = a is

(2 + 29): +2A:=pv=o.
r

The initial conditions are

A(r,o) o

u(r,O) = —= .
at

(13)

(14)

Our approach in the following derivations is first to

obtain a solution for the case of step of microwave energy,

F,(t) = 1, at some instant t = O and then to extend the

solution to a rectangular pulse using Duhamel’s theorem

[23].

1) Unit Step: If we write the displacement u(r,t)as

Z.@,t) = ?.@’) + Z4t(r,t) (15)

and substitute (15) into (8), the equation of motion becomes

two differential equations: a stationary one and a time-

varying one. Thus

d2u,(r) + 2 du,(r)-—
dr2

– -$ u,(r) = uOF,(r) (16)
r dr

and

d2u,(r,t) + ~ au,(r,t) 2 1 82u,(r,t)
— – — Ut(r,t) = —2 — .

&2 r t% r2 cl at z

(17)

The corresponding boundary conditions at r = a are

(L + 2,u) duJdr + 2@/r = O (18)

and

(2 + 2P) 8ut/i% + 2hfJr = 0. (19)

To obtain uJr), we assume a solution of the form

%(r) = up(r) + D1/r2 + D2r (20)

where uP(r) is a particular solution of (16). We now rewrite

the left-hand side of(16) as follows:

: [+d%l = ‘°Fr(r) (21)

We then integrate (21) from O to r to get the expression

‘p(r)=‘w’(%) (22)

Since u,(r) must remain finite as r + O, D1 reduces im-

mediately to zero. The coefficient .D2 is obtained by applying

the boundary condition of (18), and it is

H1
D2 = tUo —

4p

(
N = 1’3’5”””. (23)

N2n2 ,3A + 2P ‘ 2,4,6” s.

The solution of (16) is therefore given by

‘s(r)=‘0[i’’f%)*32!2+] y

(1,3,5”””

‘= 2,4,6.””
(24)

where jl(Nzr/a) is the spherical Bessel function of the first

kind and first order.

Now we let

u,(r,t) = R(r)T(t) (25)

and use the method of separation of variables to solve (17)

for the time-varying component. Inserting (25) into (17)

yields the two ordinary differential equations

d2R

()

+~g+ ~2_~R=o
p r2

(26)
r dr

d2T
— + k2c12T = O
dt 2

(27)

where k is the constant of separation to be determined.

Equation (26) is Bessel’s equation and its solution is [17]

R(r) = Bljl(kr) + B2y1(kr) (28)

where jl(kr) and yl(kr) are the spherical Bessel functions of

the first and second kind of the first order. Since R(r) is

finite at r = O, B2 must be zero. Combining (28) and the

boundary condition of (19), we obtain a transcendental

equation for k, the constant of separation,

tan (ka) = (ka)/[1 – (~ + 2p)(ka)2/(4p)]. (29)

The solution of (29) is an infinite sequence of eigenvalues

km; each corresponds to a characteristic mode of vibration

of the spherical head. It can be shown that, using the values
for brain matter given in Table I, kna = mrc, m = 1,2,3.”0

to within an accuracy of 10-7. Moreover, since (27) is

harmonic in time, a general solution for u,(r,t) may be

written as

ut(r,t) = ~ A~jl(k~r) cos co~t (30)
~=1

where

kmcl = mrccJaam = (31)

and co~ is the angular frequency of vibration of the sphere.

Note that the frequency of vibration is independent of the

absorbed energy pattern. It is only a function of the spherical

head size and the elastic properties of the medium.
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Fig. 4. The fundamental frequencies of sound generated inside the
head as a function of spherical head radii.

The fundamental frequency of sound generated inside

the spherical head is therefore given by

f, = cl/2a. (32)

Fig. 4 is a plot of the fundamental frequency of sound

generated in the head as a function of head radii. The

frequency varies from above 80 kHz for mice (a ~ 1 cm)

to about 8 kHz for humans (a = 7-10 cm).

We evaluate the constants Am by using the initial condi-

tions in (14) to obtain

{J

a

A. = –UO L rzjl(k~r)jl
()
E dr

Nn ~ a

I(J
o

1 (1,3,5, “ : “
r2[jl(kr)12 dr ,

N = 2,4,6, . “ “
o

(33)

The integrals in (33) may be evaluated [24] to give

J

a

r2jl(Lr)jl ()~r dr
o a

[

3

1[ 1
+ #n jo(k.a),

{

1,3,5, “ “ “——
(k.a)2-~ (Nz)2 N = 2,4,6, “ “ “

(34)

a3
= ~ j2(k.a) (35)

m

J

a

r2[jl(kmr)]2 dr = $ {[~l(hta)12 – jo(h~)j2(ka)}

o

(36)

609

where jz(k~a) is the spherical Bessel function of the first kind

and second order.

Using these values (33) becomes

()[12
A. = Tuoa —

2

MC [jl(kmu)]z - .A(kdjz(hd 1

{

1,3,5, ” “ “

‘= 2,4,6,.”” “
(37)

For k~a = mz = Nn, (37) simplifies to

( )[A.=–uoa~ 1+
( )1

24P 1 2

3L+ 2P% “
(38)

Nn

The displacement response of the sphere to a step input of

microwave energy is now given by introducing (37) in (30)

and then combining (24) and (30) in (15). We have

u(r,t) = UOQ + f Amjl(k~r) cos ~m~ (39)
~=1

()Q=~jl ‘$ +A~, (1,3,5, “ “ ‘

3~+2p N n ‘= 2,4,6,..””

(40)

The radial stress can be deduced from the displacement

solution using [22] and (13):

a,(r,t) = (J + 2P) ~ + 2A f – p~. (41)

We have, therefore, by substituting (6), (10), and (39) into

(41),

cr,(r,t) = 41-wOS + ~ A~k~M~ cos %t (42)
~=1

(43)

A% = [@ + 2p)jO(k~r) – @L(kr)/(hr)l. (44)

2) Rectangular Pulse: We now can obtain the displace-

ment and radial stress for a rectangular pulse of microwave

energy by applying Duhamel’s theorem [23] to the solutions

expressed by (39) and (42). That is,

u(r,t) = $
f

t
F,(t – t’)u’(r,t’) dt’ (45)

Ot ()

where u’(r,t) is the solution given by (39) for the case of a

sudden application of microwave radiation. An equivalent

expression can, of course, be written for the radial stress.

Therefore, by substituting (12) and (39) into (45), we have

for the displacement

u(r,

u(r, t
[

sin comt sin com(t– to)—— uoQto + ~ A.jl(k.r ~ –
1

7
~=f m mm

t 2 to. (47)
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Similarly, we have for the radial stress

a,(r,t) = 4puoSt0 + ~ A.k~M.

“[

sin mmt sin com(t– to)— —
1

2 t > to. (49)
O)m com

Equations (46)–(49) represent the general solution for the

displacement and radial stress in a spherical head exposed

to pulsed microwave radiation as a function of the micro-

wave, thermal, elastic, and geometric parameters of the

model.

Since UOand Am are directly proportional to l., both the

displacement and the radial stress are proportional to

the peak absorbed power density. It is easy to see that the

displacement and radial stress also depend linearly on

the peak incident power density.

At the center of the sphere, r = O, both (46) and (47)

reduce to zero, and (48) and (49) become

r /i\2 11

and

ar=4uu0[t (+)2-$ ‘0

The radial stress is therefore given by (50) and (51), and

there is no displacement at the center of the model. On the

other hand, at the surface (r = a), (43) becomes naught.

The radial stress is given by the summation of the harmonic

time functions alone.

111. DISPLACEMENT AND SOUND PRESSURE

Using the parameters for brain matter given in Table I,

we can compute the effect of microwave pulses on spherical

models of the head from the solutions derived above.

Fig. 5 shows the results of pressure computations in a

7-cm, spherical head exposed to 918-MHz radiation with

pulsewidth ranging from 0.1 to 100 ps while keeping the

peak incident (or absorbed) power density constant. The

relations between peak incident and absorbed power

density are obtained from Figs. 2 and 3. The sound pressure

amplitudes clearly depend on the pulsewidth of the im-

pinging radiation. Moreover, there seems to be a minimum

pulsewidth around 2 ps. The sound pressure amplitude

rises rapidly first to a maximum and then alternates around

A=?cn

1 I 1 1 I I 11 1 1 I , 1 1 It

0, 1 1,0 10 100

‘6
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- 1
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Fig. 5. Sound pressure amplitude generated in a 7-cm-radius spherical
head exposed to 918-MHz plane wave as a fnnction of pukewidth.
The peak absorbed energy is 1000 mW/cm3.
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Fig. 6. The dependence sound pressure amplitude generated in a
7-cm-radius spherieal head exposed to 918-MHz plane wave on peak
incident and absorbed powers. The pulsewidth is taken to be 20 I.N.

a constant average amplitude. The dependence of sound

pressure amplitude on peak powers is illustrated in Fig. 6.

The pulsewidth is taken to be 20 ps. It is therefore apparent

that the sound pressure amplitude depends upon peak

power as well.

Fig. 7 gives the computed pressures in a 3-cm-radius

sphere exposed to 2450-MHz radiation. It is readily seen

that microwave-induced sound is a function of both pulse-

width and peak powers (Fig. 8). The minimum pulsewidth

for efficient sound generation by 2450-MHz microwaves

impinging on a 3-cm-radius spherical head is around 1 .US.

Figs. 9 and 10 depict typical displacements of brain matter

in spherical models of the head exposed to pulsed micro-

waves. The pulsewidth used for computing Figs. 9 and 10 is

20 ps. These are representative graphs and are shown for

r = O, a/2, and a, where a is the radius of the sphere. As
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Fig. 7. Sound pressure amplitude generated in a 3-cm-radius spherical
head exposed to 2450-MHz plane wave as a function of pulsewidth.
The peak absorbed energy is 1000 mW/cm3.
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Fig. 8. The dependence of sound pressure amplitude generated in a
3-cm-radius spherical head exposed to 2450-MHz plane wave on
peak incident and absorbed powers. The pulsewidth is taken to be
20 /3s.

expected, the displacement at the center of the sphere is

zero. At other locations the displacement increases almost

linearly as a function of time until t = tO, the pulsewidth,

and then starts to oscillate around the value attained at

t = tO. In both cases, the maximum displacements are on

the order of 10-11 cm. The displacements stay constant

after a transient buildup because of the lossless assumption

for the elastic media. The apparent higher frequency of

oscillation seems to stem from the contribution of higher

order modes. But how these frequencies are chosen over all

others is not clear. Further investigations are currently in

progress.

The sound pressures (radial stresses) in the spherical head

models are shown in Figs. 11 and 12 for the corresponding

cases shown in Figs. 9 and 10. It is interesting to note that

the sound pressure begins with zero amplitude and then

grows to an intermediate value. With a sudden rise of

amplitude the main body of the pressure wave arrives,

A=70cm

I T0.20usec

:~,o
i?’ME (SE& (X 10$ 1

Fig. 9. Radial displacement as a function of time a 7-cm-radius
spherical head exposed to 918-MHz plane wave. The peak absorption
is 1000 mW/cm3.
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Fig. 10. Radical displacement as a function of time of a 3-cm-radius
spherical head exposed to 2450-MHz plane wave. The peak absorp-
tion is 1000 mW/cm3.

oscillating at a constant pressure level in the absence of

elastic loss. The final jump in amplitude is marked by

t = to.

IV. CONCLUSIONS

We have presented a model for sound wave generation in

spheres simulating heads of laboratory animals and human

beings by assuming a spherically symmetric microwave

absorption pattern. The impinging microwaves are taken

to be plane wave rectangular pulses. The problem has been

formulated in terms of thermoplastic theory in which the

absorbed microwave energy represents the volume heat

source. The thermoplastic equation of motion is solved for

the sound wave under stress-free boundary conditions using

boundary value technique and Duhamel’s theorem. The

extension to constrained surface is currently under in-
vestigation. It may be noted that the related case of micro-
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Fig. 11. Radial stress (sound pressure) generated in a 7-cm-radius
spherical head exposed to 918-MHz plane wave, The peak absorption
is 1000 mW/cm3.
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Fig. 12. Radial stress (sound pressure) generated in a 3-cm-radius
spherical head exposed to 2450-MHz plane wave. The peak absorp-
tion is 1000 mW/cm3.

wave pulses impinging on a semi-infinite medium of absorb-

ing material has been given previously [25], [26].

Examination of the numerical results given in the last

sedion indimtcs that pulsed microwave-induced sound

pressure amplitude depends upon both pulsewidth and peak

power density. In addition, there is apparently an optimal

pulsewidth for maximum sound pressure generation which

varies according to the sphere size and the frequency of the

impinging radiation. As shown in Tables II and III, for a

peak absorbed power density of 1000 mW/cm3 (which

corresponds to 600 mW/cm2 incident power at 2450 MHz

impinging on a 3-cm spherical head, and to 2200 mW/cm2

incident power at 918 MHz impinging on a 7-cm spherical

head), the pressure amplitudes generated at the center of

the sphere are 15–30 dB above the reported threshold of

hearing by bone conduction (60 dB, Re 0.0002 dyne/cm2,

TABLE II
SOUND PRESSUREIN A MAN-SIZED(a = 7 cm) SPHERICALJ&AD

EXPOSEDTO 918-MHz RADIATION

Pulse width In. ident owe.
?

Absorbed p.”,. Pressure db
(W) mwl cm Inw/ cm3 (dyne/cmz)

2
~ O.0002 dynelcm

0.1 . 2200 1000 0.12 55.5

0.5 2200 1000 0.60 69.5

1.0 2200 1000 1.19 75.5

5.0 2200 1000 4.90 87.8

10.0 2200 1000 4.70 87.4

20.0 2200 1000 5.10 88.1

30.0 2200 1000 2.80 82.9

40.0 2200 1000 4.10 86.2

50.0 2200 1000 5.40 88.6

TABLE III
SOUND I%msurw IN A CAT-SIZED (a = 3 cm) SPHERICALHEAD

EXPOSEDTO2450-MHz RADIATION

Pulse tidth In.ident power Absorbed power Pressure db

(W) (KN#cmq (row/cm3) (dyne/cmz) ~ O.0002 dynelcmz

0.1 600 1000 0.12 55.6

0.5 600 1000 0.59 69.4

1.0 600 1000 1.15 75.2

5.0 600 1000 1.40 76.9

10.0 600 1000 2.30 81.2

20.0 600 1000 1.35 76.6

30.0 600 1000 1.50 77.5

40.0 600 1000 2.2 80.8

50.0 600 1000 1.2 75.6

5-10 kHz) [27], [28] for pulses between 1 and 50 ps wide.

The incident power required compares favorably with that

reported previously [2], [4], [5]. At an absorbed power

density of 1000 mW/cm3, the corresponding rate of tem-

perature rise at the center of both spheres, r = O, is

0.258°C/S in the absence of heat conduction. The tem-
perature rise in 20 ps is 5.2 x 10-6”C.

Estimations of the fundamental sound frequency gen-

erated inside the head show that the frequency varies from

about 8 kHz for a man-sized sphere to approximately

80 kHz for a small animal’s, such as a mouse’s, head.

Assuming an equivalent radius of 1.5 cm for the brain of a

guinea pig, Fig. 4 indicates a fundamental sound frequency

of 48 kHz, which is in reasonably good agreement with the

50-kHz cochlea microphonics oscillations recorded from the

round window of guinea pigs [6], which also happens to be

the only available data in the literature,

Finally, it should be mentioned that the numerical results

presented in this paper should be interpreted as giving

estimates of the sound waves expected to be produced in

mammalian heads by microwave pulses, subject to our

ability to describe microwave, thermal, elastic, and geometric

properties of mammalian cranial structures. In general, the

results of this analysis indicate that thermoelastically

generated stresses, resulting from microwave absorptive

heating inside the head, represent a highly possible me-

chanism for sound generation.
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Rank Reduction of Ill-Conditioned Matrices
in Waveguide Junction Problems

DOUGLAS N. ZUCKERMAN, MEMBER, IEEE, AND PAUL DIAMENT, MEMBER, IEEE

Abstract—A new low-rank spectral expansion technique for solving
the ordinarily intractable matrix equations obtained from waveguide

field equivalence theorem decompositions is described. The method

facilitates tbe analysis of waveguide discontinuity problems that resist

ordinary methods of solntion. The technique is illustrated for the problem

of scattering at a slant interface in a rectangular waveguide.

I. INTRODUCTION

T

HE integral equations, and the corresponding matrix

equations, that represent scattering at a waveguide

discontinuity often exhibit ill-conditioned behavior. This

results in computational difficulties as inversion of such

matrices is inaccurate for even large-order truncated versions

of the matrix. It is shown here, however, that it may be

\
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possible to take advantage of the often relatively low

effective rank of the ill-conditioned portion of the matrix

to overcome such difficulties.

In the following, a typical problem, that of scattering

at a waveguide discontinuity, is solved by developing

equations that are exact but ill conditioned. First, field

equivalence theorems are used to reduce the structure to two

uniformly filled waveguides with equivalent electric and

magnetic current sheets at the discontinuity surface.

Integral equations for the current sheets are then derived,

using the null field condition in the two simpler waveguide

structures. By writing series expansions for the current
sheets, the integral equations are reduced to a system of

linear algebraic equations for the current expansion co-

efficients. These exact equations are asymptotically ill

conditioned. By a low rank spectral decomposition of the

matrix representing the ill-conditioned portion of the

equations, it is possible to solve for the currents without


