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for the MSSW as v, becomes greater than v,. The energy
from the semiconductor is received—wholly (Q; = 0) or
partly (Q; < |Q,])—by the MSSW and, consequently, the
amplitude of the waves becomes larger. But if YIG damping
is so great that Q; > |Q,|, the radiated energy is all
dissipated in YIG loss and does not contribute to the
amplification.

IV. ConcLusion

In the preceding section, the amplifying characteristics
of the MSSW WW rode caused by a carrier flow in semi-
conductor have been investigated by using the dispersion
equation and the energy conservation law for almost
transparent media. It is pointed out that the WW mode is
favorable to amplification, sifice it has a backward branch
interacting with a slower drifting carrier. One of the
important results of our energy analysis is that the MSSW
instability occurs only when the energy dissipation of the
media is negative for the waves. If this result is combined
with Schldmann’s microscopic and qualitative work [15],
one may easily appreciate the amplifying mechanism of this
type physically and construct a total picture of the system.
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On Microwave-Induced Hearing Sensation

JAMES C. LIN, MEMBER, IEEE

Abstract—When a human subject is exposed to pulsed microwave
radiation, an audible sound occurs which appears to originate from
within or immediately behind the head. Laboratory studies have also
indicated that evoked auditory activities may be recorded from cats,
chinchillas, and guinea pigs. Using a spherical model of the head, this
paper analyzes a process by which microwave energy may cause the
observed effect. The problem is formulated in terms of thermoelasticity
theory in which the absorbed microwave energy represents the volume
heat source which depends on both space and time. The inhomogeneous
thermoelastic motion equation is solved for the acoustic wave parameters
under stress-free surface conditions using boundary value technique and
Duhamel’s theorem. Numerical results show that the predicted frequencies
of vibration and threshold pressure amplitude agree reasonably well with
experimental findings.
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1. INTRODUCTION

T HAS BEEN demonstrated that sound can be generated
I in laboratory animals by the absorption of microwave
energy in the head [1]-[3]. These reports indicate that
auditory activities may be evoked by irradiating the heads
of cats, chinchillas, and guinea pigs with pulsed microwave
energy [1], [4]-[6]. Responses elicited in cats by both
conventional acoustic stimuli and by pulsed microwaves
disappear following destruction of the round window of the
cochlea [4], and following death [3]. This suggests that
microwave-induced audition is transduced by a mechanism
similar to that responsible for conventional acoustic
reception, and that the primary site of interaction resides
peripherally with respect to the cochlea. More recently [6],
sonic oscillations at 50 kHz have been recorded from the
round window of guinea pigs during irradiation by pulsed
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TABLE 1
ELAsTIC AND THERMAL PROPERTIES OF BRAIN MATTER

Specific heat, c 0.88 cal/gm—oc

h

density, p 1.05 gm/cm3

coefficient of thermal expansion, a 4.1 x lO_S/OC

Lame's constant, A 2.24 x lOlodyn/cm2

Lame's constant, u 10.52 x 103dyn/cm2

Bulk velocity of propagation, c 1.460 x loscm/sec

1

microwaves at 918 MHz. The oscillations promptly followed
onset of radiation, preceded the nerve responses, and
disappeared after death. It is therefore reasonable to con-
clude that the microwave-induced auditory effect is a
cochlear response to acoustic signals that are generated,
presumably in the head, by pulsed microwaves.

When human subjects are exposed to pulsed microwave
radiation, an audible sound occurs which appears to
originate from within or immediately behind the head.
The microwave-generated sound has been described as
clicking, buzzing, or chirping depending on such factors as
pulsewidth and repetition rate [2], [4], [5], [7], [8]. The
effect is of great significance since the average incident
power densities required to elicit the response are con-
siderably lower than those found for other microwave
biological effects and the threshold average power densities
are many orders of magnitude smaller than the current
safety standard of 10 mW/cm? [9].

Although the effect is widely accepted as a genuine
biologic effect occurring at low average power densities,
there exists some controversy regarding the mechanism by
which pulsed microwave energy is converted to sound
[11, [4], [7], [10]-[13]. This paper analyzes the acoustic
wave generated in the heads of animals and man exposed to
pulsed microwave radiation as a result of rapid thermal
expansion.

We assume that the auditory effect arises from the minus-
cule but rapid rise of temperature in the brain as a result
of absorption of microwave energy. The rise of temperature
occurring in a very short time is believed to create thermal
expansion of the brain matter which then launches the
acoustic wave of pressure that is detected by the cochlea
[13].

We consider the head to be perfectly spherical and con-
sisting only of brain matter. The impinging radiation is
assumed to be a plane wave of pulsed microwave energy.
Our approach is first to obtain the absorbed microwave
energy inside the head. The accompanying temperature rise
is then derived, and finally the inhomogencous thermo-
elastic motion equation is solved for the acoustic wave
generated in the head.

The relevant physical parameters of brain matter are
listed in Table I. All except one are typical values obtained
from the literature [14]-[16]. For the coefficient of thermal
expansion, which does not seem to have been measured in
the past, we assume a value equal to 60 percent of the
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Fig. 1. Absorbed energy distribution in a 7-cm-radius spherical model
of the head exposed to 918-MHz plane wave. The incident power
density is 1 mW/cm? [20].
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Fig.2. Absorbed energy distribution in a 3-cm-radius spherical model
of the head exposed to 2450-MHz plane wave. The incident power
density is 1 mW/cm? [20].

corresponding value for water. These values will be useful
for quantitative estimations of the frequency and threshold
of pulsed microwave-induced hearing.

II. THEORETICAL FORMULATION
A. Microwave Absorption
Let us consider a homogeneous spherical model of the
head exposed to a plane wave of pulsed microwave energy.
The absorbed microwave energy I(r,t) at any point inside
the head is given by
I(rt) = 3olE|? )
where o is the electrical conductivity of brain matter. The
induced electric field E is given by
i %+
jG+1
where E, is the incident electric field strength, w = 2xf,
[ is frequency, a; and b; are magnetic and electric oscilla-

E = Eoe—iwt Z i

j=1

[ajMOIj - iijelj] @)
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Fig. 3. The approximafed absorbed energy distribution.

tions, respectively, and M and N are vector spherical wave
functions. A derivation of (2) may be found in [17]. The
detailed expressions are also given in [18].

For humans exposed to 918-MHz radiations and small
animals such as cats exposed to 2450 MHz, the absorbed
energy distributions inside the head computed from (1) and
(2) show absorption peaks in the center of the head [19],
[20]. Plots of the absorbed energy distribution along the
three rectangular coordinate axes of a 7.0-cm-radius
spherical head exposed to 918 MHz and a 3.0-cm-radius
spherical head exposed to 2450-MHz plane waves are
shown in Figs. 1 and 2. The plane wave impinges from the
negative z direction and is polarized in the x direction.
Note that in both cases the absorbed energy along the three
coordinate axes exhibits characteristic oscillations along the
outer portion of the spherical head and reaches a maximum
near the center.

Although the detailed absorption along the three axes is
not the same, we will assume a spherically symmetric

. absorption pattern and approximate the absorbed energy
distribution inside the head by the spherically symmetric

function
W) = I, sin (M) / (_]‘_’ﬂ) 3)
a a

where ], is the peak absorbed energy per unit volume, r is
the radial variable, and a is the radius of the spherical head.
The parameter /V specifies the number of oscillations in the
approximated spatial dependence of the absorbed energy.
Fig. 3 shows the approximated energy absorption pattern
for N = 6 and is particularly suited for the cases shown in
Figs. 1 and 2. For some frequencies and sphere sizes, the
integer N may be changed to account for the difference in
absorption patterns. For instance, N = 3 may be chosen to
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approximate the absorption pattern inside a S-cm-radius
spherical head exposed to 918-MHz radiation [20]. For
other frequencies and sphere sizes, a different function will
be required to describe the absorbed energy distribution.

B. Temperature Rise

We take advantage of the symmetry of the absorbed
energy pattern by expressing the heat conduction equation
as a function of r alone [21]. That is,

10 ,00
—_—pe =
r?or or

K Ot K @
where v is temperature, x and X are, respectively, the thermal
diffusivity and conductivity of brain matter, and W is the
heat production rate, which is the same as the absorbed
microwave energy pattern and is assumed for the moment
to be constant over time.

Because microwave absorption occurs in a very short
time interval, there will be little chance for heat conduction
to take place. We may therefore neglect the spatial de-
rivatives in (4) such that

-2 2 ®)

Equation (5) may be integrated, directly, to give the change
in temperature by setting the initial temperatures equal to
zero. Thus

1, sin (Nnr/a) y
pc,  Nmrla

where p and ¢, are the density and specific heat of brain
matter, respectively, and pc, = K/k.

In biological materials, the stress-wave development
times are short compared with temperature equilibrium
times. The temperature decay is therefore a slowly varying
function of time and becomes significant only for times
greater than milliseconds. We may thus assume for a square
pulse of microwave energy, immediately after termination
of radiation, that

U(I’,t) = (6)

1y sin (Nnr/a) y
pc,  Nmrla

where 2, is the pulsewidth.

v(r,t) = )]

C. Sound Generation

We now consider the spherical head with homogeneous
brain matter as a linear, elastic medium without viscous
damping. The thermoelastic equation of motion in
spherical coordinates [22] is then given by
ot ror r? e ot A+ 2uor
where u is the displacement of brain matter, ¢, = [(A + 2u)/
p]*/? is the velocity of bulk acoustic wave propagation,
B = a(32 + 2u), o is the coefficient of linear thermal
expansion, and A4 and y are Lame’s constants. It should be
noted that the curl of u equals zero since u is in the radial
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direction only. The right-hand side of (8) is the change in
temperature which gives rise to the displacement. We first
write

p_av

= ugF(r)F(t). 9
Tt oo ugF(r)F(1) )
Hence
uy = Jo P (10)
pey A+ 2u
.and
-2 2] o
dr a a
From (6) and (7), we have
[t 0=<t<1
ORI (12)

If the surface of the sphere is stress free, then the boundary
condition at r = a is

G+20% + 0% po=o. (13)
or r
The initial conditions are
u(r,0) = ?i‘%(l) ~ 0. (14)

Our approach in the following derivations is first to
obtain a solution for the case of step of microwave energy,
F,(t) = 1, at some instant ¢ = 0 and then to extend the
solution to a rectangular pulse using Duhamel’s theorem
[23].

I) Unit Step: If we write the displacement u(r,?) as
ur,t) = ufr) + urt) 15

and substitute (15) into (8), the equation of motion becomes
two differential equations: a stationary one and a time-
varying one. Thus

d*ur) N 2duyr) _ 2

72 S T2 u(r) = uoF,(r) (16)
and
2 2
P 200 2 - L 2D,
amn
The corresponding boundary conditions at » = g are
(4 + 2u) dufdr + 2ujr = 0 (18)
and
(A + 2p) ou,Jor + 2Au,jr = 0. (19)
To obtain u(r), we assume a solution of the form
u(r) = u,(r) + Dy/r* + Dyr (20

where u,(r) is a patticular solution of (16). We now rewrite
the left-hand side of (16) as follows:

4 [1d0)

21
dr \r?* dr @)

] = ugF,(r).
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We then integrate (21) from O to # to get the expression

= n2i ),

Since u(r) must remain finite as r — 0, D; reduces im-
mediately to zero. The coefficient. D, is obtained by applying
the boundary condition of (18), and it is

22

_ 1 4u 13,5
D; = tu, (N——znz)/ 3+ 2 T 2ﬂa = {2,4,6' e 23)
The solution of (16) is therefore given by
a , {Nar du r ]
u(r) = ug |— ji{\— ) *+ s
() =4 [Nnh( p ) 3+ 2u N2
1,3,5--
N = {2,4,6”_ 24)

where j;(Nrr/a) is the spherical Bessel function of the first
kind and first order.
Now we let

u(r,t) = R(r)T(t) (25)
and use the method of separation of variables to solve (17)

for the time-varying component. Inserting (25) into (17)
yields the two ordinary differential equations

d*R  2dR (2 2)

GXL2R (k-2 R=0 26

ar?  rdr r? (26)
AT | gze2p— 0 @7

2

where k is the constant of separation to be determined.
Equation (26) is Bessel’s equation and its solution is [17]

R(r) = Byjy(kr) + B,y (kr) 28

where j,(kr) and y,(kr) are the spherical Bessel functions of
the first and second kind of the first order. Since R(r) is
finite at r = 0, B, must be zero. Combining (28) and the
boundary condition of (19), we obtain a transcendental
equation for k, the constant of separation,

tan (ka) = (ka)[1 — (4 + 24)(ka)*/(4n)]-

The solution of (29) is an infinite sequence of eigenvalues
k,,; each corresponds to a characteristic mode of vibration
of the spherical head. It can be shown that, using the values
for brain matter given in Table I, k,,a = mn, m = 1,2,3---
to within an accuracy of 1077, Moreover, since (27) is
harmonic in time, a general solution for u,(r,f) may be
written as

29

ulr,t) = Zl Apji(k,t) cos ot (30)

where
,, = k,¢; = mnc,fa

@D

and w,, is the angular frequency of vibration of the sphere.
Note that the frequency of vibration is independent of the
absorbed energy pattern. It is only a function of the spherical
head size and the elastic properties of the medium.
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Fig. 4. The fundamental frequencies of sound generated inside the
head as a function of spherical head radii.

The fundamental frequency of sound generated inside
the spherical head is therefore given by

fi = eil2a. (32)

Fig. 4 is a plot of the fundamental frequency of sound
generated in the head as a function of head radii. The
frequency varies from above 80 kHz for mice (a = 1 cm)
to about 8 kHz for humans (¢ = 7-10 cm).

We evaluate the constants 4,, by using the initial condi-
tions in (14) to obtain

Ay = —tg {i f F 2 (e ) (N——’”) dr
NTC o a
2 a
P (—1-) f 3 (k) dr}
34 + 2u \N=m 0

[, o a v - 50

(33)
The integrals in (33) may be evaluated [24] to give
[} ranstearsis (B2 ar
0 a
-a’ ka { 1.3.5. -
=  l—_—— + k N 279s
o (Nn)Z] [ ) e 24,6,
(34)

a2 2‘
(k_;) [3/1(kna) — knajo(kna)]

m

f r3j(k,r) dr
o

3
g—jz(kmcw 35)

m

a 3
f rz[jl(kmr)]z dr = % {[Jl(kma)]2 - jo(kma)jZ(kma)}
0
(36)
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where j,(k,,a) is the spherical Bessel function of the first kind

and second order.
Using these values (33) becomes

An = +“°“( : )2[[11(1« ) —2lo(k sk a>]

talea G =)
k knaio(k >
{3/1+2u )2 n® = Kt ") e = (N
1,3,5, -
g {2’4,6,_“ ED)
For k,,a = mn = Nr, (37) simplifies to
1 24u ( 1 )2]
A, = — 1+ —""— 1= |- 38
ot (Nn)[ 34 + 21 \Nzm (38)

The displacement response of the sphere to a step input of
microwave energy is now given by introducing (37) in (30)
and then combining (24) and (30) in (15). We have

u(r,t) = ugQ + Y, Anji(k,r) cos w,t (39)
m=1
a . (Nnr 4u r 1,3,5, -
Q NTCJ1( a ) —3A+2,UN27'C2 234763'..
(40)

The radial stress can be deduced from the displacement
solution using [22] and (13):
g, rt) = (A + 2;1)%E + k- Bo. @1
¥ r

We have, therefore, by substituting (6), (10), and (39) into
41),

o r,t) = 4puyS + i mkmM,, COS Wyt (42)

1 i Nrr 1,3,5, -

s= () - ()05 =l
- (43)

M, = [( + 2wjotkar) — 4jr(kn?)(eu)].  (44)

2) Rectangular Pylse: We now can obtain the displace-
ment and radial stress for a rectangular pulse of microwave
energy by applying Duhamel’s theorem [23] to the solutions
expressed by (39) and (42). That is,

t
=9 f F(t — t"y/(rt") dt’ (45)
ot Jo

u(r,t)
where u'(r,t) is the solution given by (39) for the case of a
sudden application of microwave radiation. An equivalent
expression can, of course, be written for the radial stress.

Therefore, by substituting (12) and (39) into (45), we have
for the displacement

W(r) = ugQt + 3 Ak 0 <1<

m=1 Wy,
(46)
) = gt + 3, Anii(hyr) [Fn! SO 0]
m=1 ,, Wy,
1>t (47)
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Similarly, we have for the radial stress

w .
o(rt) = 4uuoSt + Y AdenM, Pl 0 <t <y
m=1

m

(48)

o(rt) = 4uuoSty + Y. Ank,M,,
m=1

) [sin Out  Sin o,(t — to)
wm

] ) t=>te. (49)
wm
Equations (46)-(49) represent the general solution for the
displacement and radial stress in a spherical head exposed
to pulsed microwave radiation as a function of the micro-
wave, thermal, elastic, and geometric parameters of the
model. '

Since u, and 4,, are directly proportional to I,, both the
displacement and the radial stress. are proportional to
the peak absorbed power density. It is easy to see that the
displacement and radial stress also depend linearly on
the peak incident power density. )

At the center of the sphere, » = 0, both (46) and (47)
reduce to zero, and (48) and (49) become

11\2 1]
o, =4duuy |+ {—} — |t
”°[ (Nn\) 3

+ ¥ Amk,,,(}t+gu)smw’”t, 0<t<ty (50)
m=1 3 @y,
and
1)? 1]
o, =4uuy |+ |—) —=|¢
Ilo[ (Nn) 3 (]

Ak (/1 + %u) [sm O,t _ sin o,(t — to)] ,

@y @y,

1,3’5, ‘e
2,46,

The radial stress is therefore given by (50) and (51), and
there is no displacement at the center of the model. On the
other hand, at the surface (r = a), (43) becomes naught.
The radial stress is given by the summation of the harmonic
time functions alone. ‘

t>ty, N = { (51)

1. DISPLACEMENT AND SOUND PRESSURE

Using the parameters for brain matter given in Table 1,
we can compute the effect of microwave pulses on spherical
models of the head from the solutions derived above.
Fig. 5 shows the results of pressure computations in a
7-cm spherical head exposed to 918-MHz radiation with
pulsewidth ranging from 0.1 to 100 us while keeping the
peak incident (or absorbed) power density constant. The
relations between peak incident and absorbed power
density are obtained from Figs. 2 and 3. The sound pressure
amplitudes clearly depend on the pulsewidth of the im-
pinging radiation. Moreover, there seems to be a minimum
pulsewidth around 2 us. The sound pressure amplitude
rises rapidly first to a maximum and then alternates around
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Fig. 5. Sound pressure amplitude generated in a 7-cm-radius spherical
head exposed to 918-MHz plane wave as a function of pulsewidth.
The peak absorbed energy is 1000 mW/cm?3.
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Fig. 6. The dependence sound pressure amplitude generated in a
7-cm-radius spherical head exposed to 918-MHz plane wave on peak
incident and absorbed powers. The pulsewidth is taken to be 20 us.

a constant average amplitude. The dependence of sound
pressure amplitude on peak powers is illustrated in Fig. 6.
The pulsewidth is taken to be 20 us. It is therefore apparent
that the sound pressure amplitude depends upon peak
power as well.

Fig. 7 gives the computed pressures in a 3-cm-radius
sphere exposed to 2450-MHz radiation. It is readily seen
that microwave-induced sound is a function of both pulse-
width and peak powers (Fig. 8). The minimum pulsewidth
for efficient sound generation by 2450-MHz microwaves
impinging on a 3-cm-radius spherical head is around 1 us.

Figs. 9 and 10 depict typical displacements of brain matter
in spherical models of the head exposed to pulsed micro-
waves. The pulsewidth used for computing Figs. 9 and 10 is
20 ps. These are representative graphs and are shown for
r = 0, a/2, and a, where a is the radius of the sphere. As
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Fig. 8. The dependence of sound pressure amplitude generated in a
3-cm-radius spherical head exposed to 2450-MHz plane wave on
peak incident and absorbed powers. The pulsewidth is taken to be
20 us.

expected, the displacement at the center of the sphere is
zero. At other locations the displacement increases almost
linearly as a function of time until ¢ = ¢,, the pulsewidth,
and then starts to oscillate around the value attained at
t = t,. In both cases, the maximum displacements are on
the order of 107!! cm. The displacements stay constant
after a transient buildup because of the lossless assumption
for the elastic media. The apparent higher frequency of
oscillation seems to stem from the contribution of higher
order modes. But how these frequencies are chosen over all
others is not clear. Further investigations are currently in
progress.

The sound pressures (radial stresses) in the spherical head
models are shown in Figs. 11 and 12 for the corresponding
cases shown in Figs. 9 and 10. It is interesting to note that
the sound pressure begins with zero amplitude and then
grows to an intermediate value. With a sudden rise of
amplitude the main body of the pressure wave arrives,

611
3.
3¢
g +1 r=3.5
£
=g
<
¥
‘igﬂ r=0.0
22
wd
'
i)
[=)
g
z r:70
=)
@
o
8
T A=70cm
To=20usec
8 +
'.00 . 10

) .06 .08
TIME (SEC) (X10% )

Fig. 9. Radial displacement as a function of time a 7-cm-radius
spherical head exposed to 918-MHz plane wave, The peak absorption
is 1000 mW/cm?3.
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Fig. 10. Radical displacement as a function of time of a 3-cm-radius
spherical head exposed to 2450-MHz plane wave. The peak absorp-
tion is 1000 mW/cm3.

oscillating at a constant pressure level in the absence of
elastic loss. The final jump in amplitude is marked by
t = to.

1V. CoNcLUSIONS

We have presented a model for sound wave generation in
spheres simulating heads of laboratory animals and human
beings by assuming a spherically symmetric microwave
absorption pattern. The impinging microwaves are taken
to be plane wave rectangular pulses. The problem has been
formulated in terms of thermoelastic theory in which the
absorbed microwave energy represents the volume heat
source. The thermoelastic equation of motion is solved for
the sound wave under stress-free boundary conditions using
boundary value technique and Duhamel’s theorem. The
extension to constrained surface is currently under in-
vestigation. It may be noted that the related case of micro-
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Fig. 12. Radial stress (sound pressure) generated in a 3-cm-radius
spherical head exposed to 2450-MHz plane wave. The peak absorp-
tion is 1000 mW/cm3,

wave pulses impinging on a semi-infinite medium of absorb-
ing material has been given previously [25], [26].
Examination of the numerical results given in the last
section indicates that pulsed microwave-induced sound
pressure amplitude depends upon both pulsewidth and peak
power density. In addition, there is apparently an optimal
pulsewidth for maximum sound pressure generation which
varies according to the sphere size and the frequency of the
impinging radiation. As shown in Tables II and I, for a
peak absorbed power density of 1000 mW/cm® (which
corresponds to 600 mW/cm? incident power at 2450 MHz
impinging on a 3-cm spherical head, and to 2200 mW/cm?
incident power at 918 MHz impinging on a 7-cm spherical
head), the pressure amplitudes generated at the center of
the sphere are 15-30 dB above the reported threshold of
hearing by bone conduction (60 dB, Re 0.0002 dyne/cm?,
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TABLE 1I
SoUND PRESSURE IN A MAN-S1ZED (¢ = 7 cm) SPHERICAL HEAD
ExPoseD TO 918-MHz RADIATION

Pulse width Incident power Absorbed power Pressure

db 9
re 0.0002 dyne/cm

(pus) my/ cm: W/ em (dyne/cmz)
0.1 . 2200 1000 0.12 55.5
0.5 2200 1000 0.60 69.5
1.0 2200 1000 1.19 75.5
5.0 2200 1000 4.90 87.8
10.0 2200 1000 4.70 87.4
20.0 2200 1000 5.10 88.1
30.0 2200 1000 2.80 82.9
40.0 2200 1000 4.10 86.2
50.0 2200 1000 5.40 88.6

TABLE 1II
SOUND PRESSURE IN A CAT-SIZED (a = 3 cm) SPHERICAL HEAD
ExPOSED TO 2450-MHZ RADIATION

Pulse width Incident power Absorbed power Pressure db 2
(us) (aW/cm?) (mW/ cm3) (dyne/cmz) re 0.0002 dyne/cm
0.1 600 1000 0.12 55.6
0.5 600 1000 0.59 69.4
1.0 600 1000 1.15 75.2
5.0 600 1000 1.40 76.9
10.0 600 1000 2.30 81.2
20.0 600 1000 1.35 76.6
30.0 600 1000 1.50 77.5
40.0 600 1000 2,2 80.8
50.0 600 1000 1.2 75.6

5-10 kHz) [27], [28] for pulses between 1 and 50 us wide.
The incident power required compares favorably with that
reported previously [2], [4], [5]. At an absorbed power
density of 1000 mW/cm?, the corresponding rate of tem-
perature rise at the center of both spheres, r = 0, is
0.258°C/s in the absence of heat conduction. The tem-
perature rise in 20 us is 5.2 x 107°°C.

Estimations of the fundamental sound frequency gen-
erated inside the head show that the frequency varies from
about 8 kHz for a man-sized sphere to approximately
80 kHz for a small animal’s, such as a mouse’s, head.
Assuming an equivalent radius of 1.5 ¢cm for the brain of a
guinea pig, Fig. 4 indicates a fundamental sound frequency
of 48 kHz, which is in reasonably good agreement with the
50-kHz cochlea microphonic oscillations recorded from the
round window of guinea pigs [6], which also happens to be
the only available data in the literature,

Finally, it should be mentioned that the numerical results
presented in this paper should be interpreted as giving
estimates of the sound waves expected to be produced in
mammalian heads by microwave pulses, subject to our
ability to describe microwave, thermal, elastic, and geometric
properties of mammalian cranial structures. In general, the
results of this analysis indicate that thermoelastically
generated stresses, resulting from microwave absorptive
heating inside the head, represent a highly possible me-
chanism for sound generation.
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Rank Reduction of Ill-Conditioned Matrices
in Waveguide Junction Problems

DOUGLAS N. ZUCKERMAN, MEMBER, IEEE, AND PAUL DIAMENT, MEMBER, IEEE

Abstract—A new low-rank spectral expansion technique for solving
the ordinarily intractable matrix equations obtained from waveguide
field equivalence theorem decompositions is described. The method
facilitates the analysis of waveguide discontinuity problems that resist
ordinary methods of solution. The technique is illustrated for the problem
of scattering at a slant interface in a rectangular waveguide.

1. INTRODUCTION

HE integral equations, and the corresponding matrix

equations, that represent scattering at a waveguide

discontinuity often exﬁibit ill-conditioned behavior. This

results in computational difficulties as inversion of such

matrices is inaccurate for even large-order truncated versions

of the matrix. It is shown here, however, that it may be
\
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possible to take advantage of the often relatively low
effective rank of the ill-conditioned portion of the matrix
to overcome such difficnlties.

In the following, a typical problem, that of scattering
at a waveguide discontinuity, is solved by developing
equations that are exact but ill conditioned. First, field
equivalence theorems are used to reduce the structure to two
uniformly filled waveguides with equivalent electric and
magnetic current sheets at the discontinuity surface.
Integral equations for the current sheets are then derived,
using the null field condition in the two simpler waveguide
structures. By writing series expansions for the current
sheets, the integral equations are reduced to a system of
linear algebraic equations for the current expansion co-
efficients. These exact equations are asymptotically -ill
conditioned. By a low rank spectral decomposition of the
matrix representing the ill-conditioned portion of the
equations, it is possible to solve for the currents without



